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A computer program has been developed for calculating one- and two-phonon thermal diffuse scattering 
corrections for integrated X-ray intensity measurements. The correction includes the anisotropy in the 
diffuse-scattering intensity distribution and the geometry of the scan for crystals of any symmetry type. 
The calculated two-phonon correction is not negligible and may be as large as the one-phonon correc- 
tion for high-order reflections. The effects of slit size, scan range, crystal orientation, crystal misalign- 
ment, and neglect of phonon dispersion on the calculated corrections are investigated. 

Introduction 

The attainment of accurate structure factors from X- 
ray intensity measurements requires in many cases a 
correction for the thermal diffuse scattering (TDS) in- 
cluded in intensity scans. The difficulty of the calcula- 
tions has prevented the routine application of TDS 
corrections in X-ray crystallography. The general ap- 
proach to calculating TDS corrections and some of the 
approximate methods that have been used are described 
by Cochran (1969). 

Until recently, most approximate methods have in- 
volved the assumption of a spherical TDS distribution 
about the Bragg reflection. Rouse & Cooper (1969) 
have developed a program to calculate the one-phonon 
correction which correctly includes the anisotropic 
TDS intensity distribution for crystals of any symmetry. 
Walker & Chipman (1970) have written two programs 
for calculating the one-phon0n TDS correction which 
are restricted to cubic crystals. The first program 
(Walker & Chipman, 1970, 1971 a) includes the primary- 
beam divergence, wavelength distribution, and anisot- 
ropy of the scattering. The second program (Walker 
& Chipman, 1970, 1971b) neglects the primary-beam 
divergence, but includes a simplification in the calcula- 
tion which makes the program fast enough to be used 
routinely with intensity measurements. 

* Present address: Department of Chemistry, State Univer- 
sity of New York, Buffalo, N.Y. 14214, U.S.A. 

In this paper a TDS correction program for 0 :20  
scans is described which is similar to the faster program 
of Walker & Chipman but is not restricted to cubic 
crystals. In addition, an approximate correction for 
two-phonon TDS intensity is included. The calculation 
of the two-phonon correction has also been simplified 
and requires little additional effort. The program has 
been used to investigate the effects of scan range, slit 
size, and crystal orientation and misalignment on the 
corrections. 

Theory 

For acoustic phonons, neglecting dispersion, primary- 
beam divergence, and mosaic spread, the ratio of one- 
phonon-included TDS intensity to the Bragg intensity 
for a scan is given by 

11 kBT I -- ~ wt Jl(q)d3q 
~ -  I~ v _ (1) 

where the integration is over the volume in reciprocal 
space swept out by the scan and 

Jr(q) = ~712 ~ ,  [H" e#(q)] 2 
• : -  oVj2(q ) (2) 

Here H is the scattering vector, q = Iq[, kn is Boltzman's 
constant, T is the temperature, Q is the density of the 
crystal, v is the unit-cell volume, and V~(q) is the vel- 
ocity of the acoustic lattice wave q. The e j (q ) ( j=  1,2, 3) 
are unit vectors in the directions of polarization of the 
lattice wave. 
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The wavelength distribution for a 20 scan is included 
by calculating the TDS correction for each peak of the 
Ka~, Ka2 doublet. The contribution of each wavelength 
component 2, is weighted by the normalized intensity 
Wi. 

The Jl(q) term can be evaluated if the elastic con- 
stants are known. If  one defines a matrix A 

3 
A i j =  ~ Ctjmnqmqn (3) 

m,n = l 

where the c~j,,, are the elastic constants and the q~ are 
the direction cosines of the wave vector q, then (Woo- 
ster, 1962) 

H 2 3 
J~(q)-  q2 ~ h~hj(A-X)/~ (4) 

l,j=l 

where the h~ are the direction cosines of H. 
The ratio ~ can be determined by a numerical inte- 

gration over the scan volume. The boundaries of the 
scan volume are defined by the detector slits and the 
length of the scan. Walker & Chipman (1970, 1971b) 
simplified the numerical integration to a two-dimen- 
sional integration over the surface of the scan volume 
using the 1/q 2 dependence of Jx(q). Since J~(q)ocl/q 2 
and daocq 2, then J~(q)da is a constant, and 

a l -  v ~. w~ Jl(q)da cos ~dq 

- ~.. wi Jl(g)gdA cos 
V - S 

kBT 6 l - ~ w, ~ gk Jl(g)dA 
V - k = l  Sk 

(5) 

where g is the distance to the surface Sk, ~ is the angle 
between g and the vector normal to da, gk=g cos ~, 
and the summation k is over the six surfaces of the scan 
volume. A significantly shorter computation results 
from a reduction to a two-dimensional from a three- 
dimensional numerical integration. 

The ratio of the two-phonon TDS intensity to the 
Bragg intensity is given by 

/2 _ kn2TZv2 S' I J2(q)daq (6) °~2 = In ~-" wi 
¢ 

where 

j 2 ( q ) =  ~ I 1 1 j.k=l q~ (q -ql) 2 

[H.  e~,(ql)]Z[H, e j (q-ql) ]  2 d3qt (7) X 
QzV~(q0 V ] ( q - q 0  

This term can be approximated (Ramachandran & 
Wooster, 1951) by 

1 n 3 ~ ,  [H.  ej(q)]  4 
J2(q) _ ~ --  /_~ (8) q 2-v* -2--4-- j=1 Q V~(q) 

The numerical integration of J2(q) can also be re- 
duced to an integration over the surface of the scan 

by multiplying by 1/q. Let J'z(q)=(1/q)Jz(q) so that 
J~(q) oc 1/q z, then 

kn 2T2 
(9) 

Since J~(q)da is a constant, 

knvz2T2 T l o~2- ~ wl ½g2j~(g)dA cos 
• S 

kBT 2 6 I 
oc2- v2 ~ w, ~ ½gk gJ'2(g)dA . (lO) 

k=l Sk 

Use of the approximation for J2(q), 

~3 j~(q)~ ~ q2[j~(q)]2, 

gives 
re3 kBZT 2 6 l 

a2~ 4 v ~ wt ~ g k  g3[jl(g)]2dA . (11) 
l k=l  Sk 

The amount of one-phonon TDS subtracted by the 
background measurement expressed as a function of the 
Bragg reflection intensity is given by 

- - w~ ½ Jl(g)dA (H2-H1) 
IB v • sk 

(12) 

where the integration is over the surfaces at the end of 
the scan and (H2-/-/1) is the length of the scan. 

The two-phonon scattering removed by the back- 
ground measurement is given by 

~ _ _  kB 2T2 . 
v2 ~ w~ [½ k=l ~ fSk J2(g)dA ](H2-H1). (13) 

Using the approximation for Jz(q), 
n 3 kB2T  2 

o~_ 2 v 

(14) 

Calculations 

A Fortran computer program, TDS2, has been written 
to evaluate the first and second-order TDS corrections 
for 0:20 scans using equations (4) and (5) for ~1 and 
equations (4) and (11) for ~2. Background corrections 
are calculated using equation (12) for ~ and equation 
(14) for ~;. The program neglects primary-beam diver- 
gence, dispersion, and crystal dimensions and mosaic 
spread. It is assumed that the detector slits are rectan- 
gular and that the average of the background at both 
end: has been subtracted from the intensity. The pro- 
gram includes the elastic anisotropy of the crystal and 
is not limited to cubic crystals or symmetrical scans. 
The wavelength distribution is included approximately 
by calculating the correction for each wavelength and 
using an intensity weighted average. Some of the de- 
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tails of the calculation are described in the Appendix. 
The program TDS2 has been used to calculate TDS 

corrections for X-ray intensity measurements of 
hexamethylenetetramine (HMT), a cubic crystal with 
three elastic constants, and ammonium tetroxalate 
(ATO), a triclinic crystal with 21 elastic constants. The 
elastic constants of HMT have been measured by 
Hausstihl (1958) and those of ATO by Kiippers & 
Siegert (1970). The corrections were calculated with a 
precision of 0.1% in approximately 1.5 s per reflection 
on a Burroughs B6700 computer and 0.05 s per reflec- 
tion on a CDC 7600 computer. With a square detector 
slit of 1.0 ° and a scan of about 2 °, it was necessary to 
perform the numerical integration at only about 1000 
points per reflection. 

A number of calculations were undertaken to deter- 
mine the effects of the slit size, scan range, and crystal 
misalignment on the calculated TDS corrections. A 
reflection of HMT at a 20 of 100 ° with Mo Ka radia- 
tion was chosen because of the high calculated value of 
30 % for the TDS correction. 

The calculated TDS corrections are plotted in Fig. 1 
as a function of the height of the detector slit. The one- 
phonon TDS correction increases rapidly both with in- 
creasing height and width of the detector slits. Since the 
slits must be wide enough to accept the Bragg peak, the 
one-phonon TDS contribution cannot be easily reduced. 
However, the two-phonon TDS correction increases 
more slowly and can be significantly reduced if the slits 
are only as large as required by the Bragg reflection. 

The TDS corrections were calculated as a function of 
scan length. The one-phonon correction also increases 
rapidly with the length of the scan. As with the detector 
slits, the size of the Bragg peak and the splitting of the 
Kal, Ka2 doublet prevents significantly reducing ~1 or 
a2 by reducing the length of the scan. In these calcula- 
tions the scan was begun at [20(Kat)- t ]  and ended at 
[20(Ka2)+t]. 

Since the crystal may often be slightly misaligned 
with respect to the scan volume during the data collec- 
tion, the effects of misalignment on the TDS correc- 
tions have been investigated. The dependence of al and 
a2 on misalignment of length (20), height (Z), and 
width (co) of the scan was calculated. The values of al 
and a2 are found to be nearly independent of small 
errors in crystal orientation. The TDS corrections are 
plotted in Fig. 2 as a function of misalignment in 
height. 

The calculated TDS corrections for HM T do n o t  
vary significantly with crystal orientation because 
HMT is nearly elastically isotropic. However, with 
ATO the correction varies with crystal orientation. The 
variation of the first and second-order TDS corrections 
with rotation around the diffraction vector is plotted 
in Fig. 3. for an ATO reflection at a 20 of 125 ° with 
Mo Ka radiation. For elastically anisotropic crystals 
the variation of the TDS with orientation will contri- 
bute to disagreement between the intensities of sym- 
metry-equivalent reflections. 

A model calculation was performed to obtain a 
quantitative estimate of the effect of neglecting phonon 
dispersion. An isotropic model was used for the ideal- 
ized one and two-phonon scattering distributions 

l , (q)= -qC2L 

C, 
12(q) - 

q 

where C1 and C2 are constants for a particular reflec- 
tion. The distributions including dispersion are given 
by 

Ilo(q) = C1 [ 1 ]u 
qZ D--~ 

C2 1 * 
12o(q)---~-- [ ] 

where D(q) describes the functional form of the disper- 
sion curve. 

Assuming linear chain dispersion for the model gives 

sin 
D(q) = 

n q 
2 qm 

where qm is the distance to the Brillouin zone boundary. 
The scan volume is taken to be a sphere of radius g and 
the Brillouin zone by a sphere of radius q,,. 

* The two-phonon expression should include an integration 
over all wave vectors 

$ 1 1 1 1 2 ,  [ 1 ] 12D(q)=C~ -Iq~l 2 D(q~ Iq-qxl 2 D(q-q~) d3q~" 

For this application, an approximation similar to equation (8) 
is used. 

Gt -- 01" 

I I I | I 

I 2 3 4 5 

Fig. 1. Calculated one and two-phonon TDS corrections for a 
reflection of HMT as a function of the height in degrees of 
the detector slit. The detector slit width is 1-0 ° and the scan 
range 2.2 ° . 
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The calculated corrections including background 
corrections are given by 

f~ 4n gall(g)= _ ~  gC1 ~x-C~= Ii(q)d3q - 

4n gai2(g)= _ ~  g2C 2 o~2-oq= f: I2(q)d3q- T 

, f g 4n ~ l ° - ~ l ° =  I~°(q)d3q- y g3lx°(g) 
0 

, f g 4n ~2°--~l° = I2°(q)d3q- T g312°(g)" 
0 

0.3 

I 

G ;  --Gt 

a 2 ~ Q 2  # 

- 0-75 - 0"50 - 0.25 O. 0 0"25 O. 0 0"75 

Fig.2. Calculated one and two-phonon TDS corrections as a 
function of misalignment in degrees of the height of the 
scan. The dimensions of the detector slits are 1.0 ° and the 
scan range is 2.2 ° . 

The evaluations of cqo and a2o require numerical inte- 
grations. In Fig. 4, the ratios Rl=(alo-ct~o)/(al-c~'O 
and R2=(~2o-c~2o)/(~2-~) are plotted as a function 
of g/qm. 

D i s c u s s i o n  

The computer program TDS2 is a generalization of 
Walker & Chipman's (1970, 1971b) approach for cal- 
culating the correction thermal diffuse scattering in- 
cluded in intensity measurements. The program is ap- 
plicable to crystals of any symmetry type and includes 
both one and two-phonon scattering. The corrections 
are calculated rapidly at a level of approximation 
which appears to be reasonable for most real experi- 
ments. 

Since most of the included TDS occurs close to the 
Bragg reflection, i.e. at small values of q, the neglect of 
primary-beam divergence, wavelength distribution, and 
dimensions and mosaic spread of the crystal are ex- 
pected to be good approximations when the boundaries 
of the scan volume are not too close to the Bragg peak. 

Walker & Chipman (1970) found that the neglect of 
primary-beam divergence results in an average change 
in the correction of about 3 % or less for one-phonon 
scattering. Neglect of the K~I, K~2 doublet results in a 
larger overcorrection which increases with scattering 
angle. A more detailed study of the effects of experi- 
mental resolution by Scheringer (1973) using an iso- 
tropic model for the TDS distribution and spherical 
scan range indicates that the one-phonon correction 
may be as much as 20 % too large, but in most cases 
will be about 5 % too large. 

The neglect of dispersion will be a good approxima- 
tion when q is small with respect to the boundaries of 
the Brillouin zone. The effects of dispersion will be im- 
portant  if the reciprocal axes are short, since the Bril- 
louin zone will be close in size to the scan volume. At 

0 A0 ~ d0 1, - 1 8 0  

Fig. 3. Calculated one and two-phonon TDS corrections for a 
reflection of ATO as a function of rotation (in degrees) about 
the diffraction vector. The dimensions of the detector slits 
are 1.0 ° and the scan range is 2.4 °. 

0!5 1!0 
Fig.4. The R functions for one and two-phonon corrections as 

a function of g/qm, the ratio of the size of the scan to the size 
of the Brillouin zone. 
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high scattering angles, dispersion may become impor- 
tant because of the long 20 scan necessary for the Kal, 
Ka2 doublet. Assuming linear-chain dispersion, the 
results of the model calculation given in Fig. 4 repre- 
sent an upper limit to the overcorrection error since the 
scan-range dimensions will not approach the Brillouin 
zone boundary in all directions in real experiments. 

The magnitudes of the first and second-order TDS 
corrections indicate that the neglect of included TDS 
is a significant remaining source of systematic error 
in the determination of structure factors from intensity 
measurements. The approximate'dependence of the first 
order TDS on H z introduces a systematic error in the 
determination of atomic thermal parameters. The in- 
fluence of the neglect of second-order TDS has not been 
studied. 

It is difficult to estimate the errors involved in the 
approximation to the second-order TDS correction 
since an evaluation using equation (7) is extremely 
tedious. A calculation of the two-phonon intensity 
distribution at a few points in the scan volume indicates 
that, depending on the direction, both over- and under- 
estimates of the scattering can be expected when the 
approximation given by equation (8) is used. The 
second-order scattering may be expected to have a more 
complicated dependence on orientation than the de- 
pendence predicted using the approximation. 

Cooper (1970) has noted that the neglect of resolu- 
tion effects will partially compensate for neglect of two- 
phonon scattering. However, the two-phonon correc- 
tion is approximately proportional to H e and at high 
angles will be many times larger than the effects of 
neglecting resolution in calculating the one-phonon 
correction. 

The close relation between the atomic thermal par- 
ameters and the apparent electron density distribution 
requires a careful treatment of the TDS in the experi- 
mental determination of electron density distributions. 
The importance of included TDS in the comparison of 
X-ray and neutron diffraction results has been dis- 
cussed by Cooper (1969). 

Studies of the effects of slit size and scan length and 
the effect of neglecting resolution factors suggest some 
favorable choices of experimental conditions, which 
have been noted by Scheringer (1973). If no TDS cor- 
rection is to be applied to X-ray intensity measurements, 
then the diffuse scattering will be minimized by using 
the minimum detector-slit dimensions and scan range 
allowed by the size of the Bragg reflection. If TDS cor- 
rections are to be calculated, then somewhat larger 
detector slits and scan ranges are desirable to avoid 
large resolution effects. 
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APPENDIX 

The evaluation of equations (5) and (11) involves 
numerical integrations over the surface of the scan 
volume. The boundaries of the scan volume can be 
easily defined in a coordinate system related to the 
diffraction geometry (Fig. 5). A point, X, in this system 
can be related to a point, X', in the coordinate system 
in which the elastic constants are defined by the matrix 
equation 

X = 0K~X~STX' 
where 

X ~ , 

and T is the matrix which relates the coordinate system 
of the elastic constants to the reciprocal axes, S is the 
crystal orientation matrix which contains the direction 
cosines of the reciprocal axes in the instrument co- 
ordinate system, and ~ ,  X, and ~ are the rotation ma- 
trices corresponding to the ~, Z, and ~0 motions of a 
four-circle diffractometer (Busing & Levy, 1967). The 
matrix 0 is defined by 

(s,n0 0 
O= - c o s  0 1 

0 0 

where 20 is the Bragg scattering angle. 
Each surface is divided into a grid and the coor- 

dinates of each point are transformed into the coor- 
dinate system of the elastic constants by the inverse 
transformation 

X' = (0f~Xtl)ST)- IX . 

2o . X 

Fig. 5. The coordinate system defined by the diffraction geom- 
etry and the scan is shown in the lower right of the Figure. 
The instrument coordinate system is shown at the top of the 
Figure. 
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After the numerical integration has,been performed, 
the number of points along each dimension of the grid 
is doubled and the calculation is repeated. The final 
result is obtained by extrapolation to d a =  O. 

The program TDS2 is included as a subroutine in our 
program for applying Lorentz and polarization correc- 
tions to intensity measurements. The intensity correc- 
tion is given by 

Icorr=Iobs/(1 +Oq--O~ i + 0~2--0~:2 ) . 
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On Some Problems Connected with Thermal Motion in Molecular Crystals 
and a Lattice-Dynamical Interpretation 
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Interpretation of thermal motion in molecular crystals is important for obtaining accurate bond lengths. 
However, even in a simple case, such as a rigid body, serious difficulties may arise. Contrary to what 
seems to be a widespread feeling, mathematical methods for overcoming these difficulties, such as re- 
gression on principal components, may often lead to results without physical meaning, and a good fit to 
individual B's is not necessarily a proof of a correct procedure. For an accurate bond-length correction, 
a lattice-dynamical treatment is particularly promising as a practical method of solution: examples of 
application, which result in a satisfactory interpretation of molecular motion, are given. 

Introduction 

For some years, it has been good practice for crystallog- 
raphers to apply libration corrections to bond dis- 
tances: for these corrections the molecular motion 
must be interpreted (Cruickshank, 1956a, b, c, !961; 
Busing & Levy, 1964). More recently, the Schomaker- 
Trueblood approach (Schomaker & Trueblood, 1968) 
has afforded a complete mathematical method for 
solving this problem for rigid molecules, and extended 
discussion of this technique is reported (Johnson, 
1970b; Pawley, 1970). Among the more noteworthy de- 
velopments are Pawley's proposal of introducing rigid- 
body constraints directly into least-squares refinement, 
with a considerable reduction of the number of param- 
eters to be determined (Pawley, 1964, 1971), and John- 
son's 'segmented rigid-body' model (Johnson, 1970a). 

In the Schomaker-Trueblood treatment, apart from 
indeterminacy of the trace of S, singularity or severe 
ill-conditioning of the normal-equation matrix may 

often be encountered; for overcoming some of these 
difficulties, regression on principal components has 
been proposed (Johnson, 1970a, b). We feel that in 
some cases correct interpretation of thermal motion 
from diffraction data can be particularly difficult, even 
for a rigid body, and indiscriminate use of regression 
on principal components is far from being satisfactory. 
A detailed discussion about the possibility of obtaining 
a physically meaningful solution seems to us therefore 
to be particularlyneeded. 

Regression on principal components 

This  argument is exhaustively treated in some mathe- 
matical and crystallographic works (Golub & Kahan, 
1965; Massy, 1965; Kendall & Stuart, 1966; Hanson 
& Lawson, 1969; Rollett, 1970; Johnson, 1970b; Go- 
lub & Reinsch, 1970); for our purpose, it is only ne- 
cessary to keep a few points in mind. 

Because of the orthogonality of the latent vectors 


